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Abstract—Under suitable reaction conditions, monoalkylation of triethyl phosphonocrotonate 11 could be efficiently accom-
plished, leading to the preparation of �-substituted phosphonates 15. The reaction is totally regioselective and completely
(E)-selective. The novel phosphonocrotonate 19 underwent smooth Horner–Emmons condensation, producing a key-precursor for
the synthesis of the middle core of the manzamine alkaloids. © 2002 Elsevier Science Ltd. All rights reserved.

Manzamine A 1 is a member of a growing family of
unique indole alkaloids isolated by Higa and co-work-
ers in 1986 from sponges of the genus Haliclona and
Pelina.1 The complex architectural framework of manz-
amine A 1, coupled with its powerful biological
activities2—antitumoral, antibacterial, cytotoxic and
antimalarial—has stimulated considerable synthetic
efforts towards its preparation,3 culminating in 1998
with the first total synthesis of this natural product.4

Our own interest in this area has prompted us to
develop an efficient and flexible construction of the
polycyclic middle core of the manzamines based upon a
novel cascade anionic polycyclisation methodology
(Fig. 1).5 Thus, treatment of the substituted sorbate
derivative 2, easily available by Michael addition of the
corresponding gramine to acrolein followed by a

Horner–Emmons reaction, with KOBut smoothly
afforded the tetracyclic system 3 in up to 55% yield.

Although this approach allowed us to assemble rapidly
a variety of functionalised polycycles such as 3, the
introduction of the bridging 13-membered macrocyclic
ring required unacceptably lengthy synthetic sequences.
In order to circumvent this problem and maintain the
high convergency of our approach, we envisioned that
pentacycle 4 might be constructed from the macrocyclic
amine 5 by a direct anionic polycyclisation (Fig. 2).
Further disconnection of 5 revealed that it could be
assembled readily from gramine 8, acrolein 7 and the
�-substituted phosphonocrotonate 9. Subsequent cleav-
age of the C3�C4 bond generated commercially avail-
able triethyl phosphonocrotonate 11 and alkyne 10.

Figure 1.
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Figure 2.

Thus, a straightforward route to phosphonate 9, and
hence to macrocycle 5, would involve the regioselective
alkylation of 11 by 10.6

Initial attempts at alkylating the anion derived from
triethyl phosphonocrotonate 11 under usual conditions
failed to deliver the desired substituted phosphorus

reagent. Therefore, a more detailed study of the reac-
tion conditions was conducted. Some selected results
are collected in Table 1.

As can be seen from Table 1, alkylation of 11 using
NaH as a base, in DMF, afforded a mixture of mono-
and disubstituted adducts 12 and 13 in poor yields,

Table 1. Optimising the conditions for the alkylation of phosphonocrotonate 11
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accompanied by a large amount of decomposition
products (entries 1 and 2).7 Screening various bases
rapidly revealed that the use of LiHMDS minimised the
decomposition of 11, affording the mono- and dialkyl-
ated adducts 12 and 13 in reasonable yields (entry 3).
Interestingly, the ratio of 12:13 depended strongly upon
the nature of the leaving group, with the triflate afford-
ing the highest preference in favour of the monosubsti-
tuted product 12 (entries 1–3). Remarkably, no
�-adducts were produced under these reaction condi-
tions.8 Even more noteworthy is the observation that
the monoalkylated phosphonate 12 was exclusively pro-
duced as the (E)-geometric isomer.9

Whilst the solvent and the temperature had little influ-
ence on the outcome of the alkylation (entries 4–6), the
use of an excess of phosphonocrotonate (2 equiv. per
alkylating agent) led, not only to improved yields, but
also increased selectivity in favour of 12 (entries 3 and
4). Finally, an optimum was reached in this case using
NaHMDS at −20°C (entry 7). Under these conditions,
the desired pure adduct 12 was obtained in 69% yield,
after purification (the ratio of 12:13 in the crude
product=12:1).

In order to delineate the scope of this protocol, we next
applied it to a selection of alkylating agents. Some
representative results are collected in Table 2.

As can be seen from Table 2, a range of primary and
�-branched aliphatic substrates can be employed suc-
cessfully in the alkylation of phosphonocrotonate 11

(entries 1–3). Allylic and benzylic halides are also good
electrophiles (entries 4–6). However, the reaction is
unsuccessful with secondary halides, such as isopropyl
iodide (entry 7). It is interesting to note, that for some
highly reactive alkylating agents, the use of LiHMDS
rather than NaHMDS leads to better yields of 15 even
though the ratio of crude 15/16 is slightly lower.10

Having demonstrated the usefulness of this protocol for
the preparation of a variety of substituted phospho-
nocrotonate derivatives, we next turned our attention
to the synthesis of macrocyclic amine 5 (Fig. 3).

Alcohol 17, available in large scale by the alkylation of
3-butyn-1-ol with 1-bromo-4-chlorobutane, was initially
transformed into the corresponding triflate 18, which
reacted smoothly with the lithium anion of triethyl
phosphonocrotonate 11, affording the desired �-alkyl-
ated adduct 19 in 70% yield. Treatment of 19 with
KOBut generated the corresponding enolate which
underwent efficient Horner–Emmons11 condensation
with �-aminoaldehyde 21, prepared quantitatively by
the DBU-catalysed Michael addition of diallylamine 20
to acrolein 7,12 leading to the sorbate derivative 22 in
an overall yield of 71%. Monodeallylation was accom-
plished quantitatively by selective replacement of one of
the allyl substituents by trichloroethyl chloroformate
and subsequent reductive work-up with Zn in AcOH.13

Secondary amine 23 underwent smooth macrocyclisa-
tion in the presence of NaI and DIEA, affording 24 in
72% yield. Finally, deallylation followed by Mannich

Table 2. Monoalkylation of phosphonocrotonate 11
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Figure 3.

condensation of the resulting amine with indole and
formaldehyde,14 delivered the desired macrocycle 5 in
70% overall yield, ready to undergo the anionic polycy-
clisation cascade.

In summary, we have demonstrated that under suitable
reaction conditions, the monoalkylation of triethyl
phosphonocrotonate could be efficiently accomplished,
leading to the preparation of a range of �-substituted
phosphonates.15 The reaction is not only totally
regioselective, affording solely the �-adducts, but also
completely (E)-selective. These novel phosphonates
undergo smooth Emmons–Horner condensation, pro-
ducing functionalised sorbate derivatives. The synthetic
usefulness of this methodology has been highlighted by
the concise and efficient assembly of macrocyclic amine

5, a key-precursor to the middle core of the manzamine
alkaloids.

Current efforts are now being directed towards broad-
ening the scope of this protocol and applying it to the
total synthesis of manzamine A 1 and to other relevant
natural products.
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G. F. Solberghe, I. E. Markó / Tetrahedron Letters 43 (2002) 5061–5065 5065

Figure 4.

References

1. (a) Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G.
J. Am. Chem. Soc. 1986, 108, 6404; (b) Sakai, R.;
Kohmoto, S.; Higa, T.; Jefford, C. W.; Bernardinelli, G.
Tetrahedron Lett. 1987, 28, 5493.

2. (a) Kobayashi, J.; Tsuda, M.; Ishibashi, M. Pure Appl.
Chem. 1999, 71, 1123; (b) Ang, K. K. H.; Holmes, M. J.;
Higa, T.; Hamann, M. T.; Kara, U. A. K. Antimicrob.
Agents Chemother. 2000, 44, 1645.

3. (a) Magnier, E.; Langlois, Y. Tetrahedron 1998, 54, 6201;
(b) Winkler, J. D.; Axten, J. M.; Hammach, A.; Leng-
weiller, U.; Houk, K. N. Tetrahedron 1998, 54, 7045; (c)
Li, S.; Ohba, S.; Kosemura, S.; Yamamura, S. Tetra-
hedron 1998, 54, 8691; (d) Uchida, H.; Nishida, A.;
Nakagawa, M. Tetrahedron Lett. 1999, 40, 113; (e) Cold-
ham, I.; Coles, S.; Crapnel, K.; Fernandez, J.; Haxel, T.
Chem. Commun. 1999, 1757.

4. (a) Winkler, J. D.; Axten, J. M. J. Am. Chem. Soc. 1998,
120, 6425; (b) For a second total synthesis, see: Martin,
S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am.
Chem. Soc. 1999, 121, 866.
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